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First Year Physics: Prelims CP1

Classical Mechanics: Prof. Neville Harnew

Problems I: Motion in one Dimension

Questions 1-9 are “standard” examples. Questions 10-12 are additional questions that may also be
attempted or left for revision. Problems with asterisks are either more advanced than average or require
extensive algebra. All topics are covered in lectures 1-5 of Michaelmas term.

Standard Questions

1. Vectors in two dimensions: The position vector of a particle moving in the x-y plane is given
by a vector of magnitude r and an angle θ with the x-axis. At t = 0, r = 4i+ 3j(cm).

(a) Find a unit vector û that makes an angle θ = 20◦ with r.

(b) Show by geometrical construction that any vector in the x-y plane may be obtained by linear
combination of r and û.

(c) Assume that at t=0 the particle starts to move in circular motion about the origin, at a constant
speed v = 15 cms−1. Explain why the motion is still accelerated. Show by geometrical illustration that
the velocity is tangent to the path.

(d) Find the dependence of θ on time, hence obtain expressions for r and the velocity v as a function
of time.
[Ans: (a)û = 0.55i+ 0.84j (d) θ = 3t+ 0.64 (rad)]

2. Energy conservation: A pendulum bob of mass m, at the end of a string of length ℓ, starts
from rest with the string taut and horizontal – see figure.

m

l

θ

2m

At the lowest point of swing the bob strikes a stationary object of mass 2m resting on a frictionless
horizontal surface. The collision is elastic. Find (using energy considerations):

(a) the speed of the bob just before impact,

(b) the tension in the string at the same instant,

(c) the velocity given to the object by the impact.

(d) After the impact the bob will recoil to reach a new maximum height before resuming oscillations.
Find the maximum angle (to the vertical) that the string makes in subsequent oscillations of the bob.

[Ans: (a)
√
2gℓ, (b) 3mg, (c) 2

√
2gℓ/3, (d) 27.3◦.]

3. The Simple harmonic oscillator: A particle of mass m constrained to move in the x-direction
only is subject to a force F (x) = −kx, where k is a constant. Show that the equation of motion can
be written in the form

d2x

dt2
+ ω2

0x = 0, where ω2
0 = k/m .
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(a) Show by direct substitution that the expression

x = A cosω0t+B sinω0t

where A and B are constants, is a solution and explain the physical significance of the quantity ω0.
Show that an alternative solution may be expressed as

x = xmax cos(ω0t+ ϕ)

where xmax is the amplitude and ϕ is the phase constant of oscillation.

(b) Find in terms of m and ω0 the change in the potential energy U(x) − U(0) of the particle as it
moves from the origin. Explain the physical significance of the sign in your result.

(c) The potential energy is subject to an arbitrary additive constant; it is convenient to take U(0) = 0.
The kinetic energy T (x) = 1

2mv2. Show by differentiation that the particle’s total energy (E = T+V ) is
constant. Express E as a function of the particle’s (a) maximum displacement xmax and (b) maximum
velocity vmax.

4. The potential energy function: A particle of mass m, starting from x = −∞, approaches a
force region whose potential is given by

U(x) =
U0 a

2

x2 + a2
,

where U0 > 0 and a are constants.
(a) Derive an expression for the force on the particle as a function of x.
(b) Draw rough graphs of the force and the potential as functions of x.
(c) State in which region the force is attractive and which repulsive, and explain how your answers

can be understood in terms of your graphs.
(d) If a particle is released at rest from the origin, with what velocity will it be travelling at very

large distances?
(e) What is the least velocity it must be given at x = −∞ which will allow it to reach +∞?

5. SHM about stable equilibrium: The Lennard-Jones potential describes the potential energy
between two atoms in a molecule

U(r) = ϵ[(r0/r)
12 − 2(r0/r)

6],

where ϵ and r0 are constants and r is the distance between the atoms.

(a) Sketch U(r) and find the position of the minimum potential energy and the depth of the
potential well (this should identify the constants).

(b) Expand U(r) as a Taylor series about r = rmin up to the quadratic term.

(c) Use (b) to show that the motion for small displacements about the minimum is simple harmonic
and find its frequency. [Ans: ω = (12/r0)

√
ϵ/m.]

(d) Typical vibrational frequencies of diatomic molecules lie in the near infrared (around 3 ×
1013 Hz). Estimate the value of the effective spring constant for a typical molecule, such as N2.

[Ans: k ∼ 400Nm−1.]

6. A two-particle problem in 1-D - the centre of mass system: Consider two particles m1

and m2 moving in one dimension under the influence of an attractive force of magnitude Fint between
them. Each is also acted on by an external force: F1 and F2, respectively. Let the particles have
co-ordinates x1, x2 respectively, with x1 < x2.

(a) Write down the equations of motion of the two masses separately. By adding your two expres-
sions, get a single equation of motion for the system in terms of F1 and F2.
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(b) Hence show that if there are no external forces present (i.e. F1 = F2=0) the momentum of the
system is conserved.

(c) Write down an expression for the position Xcm of the centre of mass (CM) of the system. By
differentiating your expression, show that the momentum of the system is the same as that of a mass
M = m1 +m2 moving with the velocity of the centre of mass.

(d) Differentiate again, and compare your result with the equation obtained in (a) above. Hence
show that the acceleration of the centre of mass is as if all the mass were concentrated there and the
resultant external force acted through it. What happens to the centre of mass of the system if there
are no external forces?

(e) Assume that the two masses are isolated in an inertial reference frame (no external forces: F1 =
F2 = 0) and consider the motion of the particles in the CM frame using the coordinates x′i = xi−Xcm

(i = 1, 2). Show that the equation of motion of the system in the CM frame under the influence of
the internal force is given by Newton’s second law as µẍ = Fint where µ is the reduced mass of the
two particle system, 1/µ = 1/m1 + 1/m2 and x′ = x′2 − x′1 is the relative distance between the two
particles.

Collisions in One Dimension

7. Elastic equal mass collision: A runaway (assume frictionless) railway truck A of mass m is
moving along the track at velocity u◦ and hits a stationary truck B of identical mass m. By considering
the conservation of linear momentum and energy, assuming the collision between the trucks to be elastic,
determine the velocities, vA and vB, of the two trucks after the collision.

Now consider the same collision as viewed by an observer O′ in an inertial reference, attached to the
Centre of Mass and moving at constant velocity VCM .

(a) Calculate VCM and explain why it remains unchanged after the collision.
(b) Show that the total momentum in the CM frame is zero (hence the alternative name zero

momentum frame).
(c) Determine the initial and final velocities of the two trucks as viewed by O′, and illustrate your

solution both before and after the collision with simple, clearly labelled sketches. Notice that in the
(CM) frame, the magnitude of the velocity of each truck remains unchanged after the collision.

(d) Discuss the advantages of observing collisions in the CM frame.

8. Elastic unequal mass collision: A similar situation as in the previous question but now truck A
has mass mA and initial velocity uA. Truck B now with mass mB (< mA) is initially at rest. Assuming
that the collision is elastic, find the subsequent velocities vA, vB by solving the problem: (a) in the
Laboratory Frame, (b) in the CM Frame. On the basis of these results find the velocities in the two
limiting cases: (i) mA >> mB; (ii) mA << mB.

[Ans: vA = (mA −mB)uA/(mA +mB), vB = 2mAuA/(mA +mB).]

9. Inelastic equal mass collision: Consider the problem of the colliding railway trucks in problem
7. Suppose now that the collision is inelastic, such that half the initial kinetic energy is ‘lost’ during
the collision.

(a) By considering the conservation of linear momentum and the changes in the total kinetic energy
of the system, determine the velocities, vA and vB, of the two trucks after the collision in the laboratory
reference frame. Discuss where the ‘lost’ kinetic energy might have gone (in what sense is it really
‘lost’?).

(b) Newton’s coefficient of restitution e (for 1-D collision) is defined as the ratio of the magnitude
of the relative velocity of separation of the two colliders to that of their initial approach:

e =
|vB − vA|
|uA − uB|

Determine the value of e for the inelastic collision in (a) above.
(c) Consider the same inelastic collision in (a) as viewed by the an observer in the CM frame.

Determine the final velocities v′A and v′B of the two trucks in this frame. What is the value of e′ in
this frame?
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Additional questions

10. Energy loss to rest: A highly (though not perfectly) elastic ball is released from rest at a height
h above the ground and bounces up and down. With each bounce a fraction f of its kinetic energy
just before impact is lost. Hence show that the height reached on the nth bounce is hn = (1 − f)nh.
Find the time taken for the ball to drop from height hn and subsequently reach hn+1. Hence find an
expression for the time taken for the ball to come to rest and evaluate it for the case when h is 5 m
and f is 0.1.

[Ans: time to rest is
√
2h/g(1 + ϵ)/((1− ϵ) where ϵ =

√
1− f ; 38.3s.]

11. * Force and momentum - falling chain:
(a) A uniform chain of length L and mass m is stretched out on a frictionless horizontal table with

part of its length h hanging down through a hole in the table. Assuming that the chain is released
from rest, how long will it take the chain to fall off. Neglect the friction between the hole and the
chain.

(b) The chain in (a) is held stretched vertically just above the surface of a weighing scale and then
released from rest. What is the reading of the scale when half of the length of the chain has fallen
down?

[Ans: (a)
√
L/g cosh−1(L/h) (b) 3

2mg]

12.* The equation of motion: constant force-sliding blocks: A block of mass m slides on
the frictionless surface of an inclined plane of angle θ,which itself has a mass M and allowed to slide
on a horizontal surface. Assuming no friction between the surfaces:

(a) Write the equations of motion of the block and the inclined plane in vectorial form as viewed
in an inertial reference frame.

(b) By resolving the equations in (a) into components in a suitable coordinate system, find the
acceleration of the block and the inclined plane.

(c) Calculate the internal force that the block and the inclined plane apply on each other.
(d) Show by direct substitution that the horizontal component of the linear momentum of the

system remains constant.
[Ans: (a)−g sin θ cos θ

sin2 θ+M
m

(c)Mg cos θ
sin2 θ+M

m

]
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